TI-83/84 Graphing Calculator Review Tips

I. Graphing

Press $Y=$ to get to the equation screen. Type the desired function(s) in any location (Y_{1} is the most common). Press GRAPH. This will graph most functions. Occasionally, it will be necessary to resize the graphing window to show the function. This can be done manually or automatically.

Manually. Press WINDOW. Type the smallest x-value for your window in Xmin. Enter the largest x-value for your window in Xmax. Xscl is used to indicate how often you want a tic mark along the x-axis. Ymin is the smallest y-value for your window. Ymax is the largest y-value for your window. Yscl is used to indicate how often you want a tic mark along the y-axis.

Automatically. Press ZOOM. The following explains each ZOOM feature. 1: ZBOX Allows the user to set a window of any desired size that is smaller than the current window. After pressing ZBOX, use the directional arrows to move the cursor to a corner of your new widow. Press ENTER to anchor that corner. Use directional arrows to expand the rectangle to the other corner of a diagonal. Press ENTER again. The rectangle will be resized to fill the entire screen.

2: Zoom In

3: Zoom Out

4: ZDecimal

5: ZSquare

This causes the widow to zoom in by a fixed factor in both the x and y directions. The default factor is 4 . Each time you press ENTER while in this mode, the screen will zoom in by the current factor. After pressing Zoom In, use directional arrows to move the cursor to the center of the desired screen. Press ENTER. The screen will zoom in by the specified factor. You may move the cursor and press ENTER as many times as you want to zoom in as close as your want. It is possible to change the default value. This causes the window to zoom out by a fixed factor in both the x and y directions. The default factor is 4 . Each time you press ENTER while in this mode, the screen will zoom out by the current factor. After pressing Zoom In, use directional arrows to move the cursor to the center of the desired screen. Press ENTER. The screen will zoom out by the specified factor. You may move the cursor and press ENTER as many times as you want to zoom out as far as your want. It is possible to change the default value. This resizes the window so that each horizontal pixel represents a change of 0.1 in the x-coordinate. This gives a convenient window when using the TRACE button. The domain is from -4.7 to 4.7. The range is from -3.1 to 3.1 .
This resizes the window so that each pixel represents the same number in both the x - and y-directions. The domain defaults to -15 to 15 . The range goes from -10 to 10 . This window is useful in seeing the true aspect ratio of the graph.

A common error message when graphing is ERR: DIM MISMATCH. This usually occurs when the StatPlot window is on and the referenced lists do not contain the same number of elements. To correct this error, press $\mathbf{2}^{\text {nd }} \mathbf{Y}=$ [STAT PLOT]. Press 4: PlotsOff. This transfers the command to the home screen. Press ENTER and the command will be executed. The command should be used whenever you wish to graph an equation without plotting any data points.

II. Finding Roots

To find the roots of a function, type the function in the equation page (usually \mathbf{Y}_{1}). Graph the function in an appropriate window. Press $2^{\text {nd }}$ TRACE. Choose 2: zero. The calculator will then switch to the graphics screen, showing the graph of the function. Type in any x-value that is clearly to the left of the root and press ENTER. Next, type in an x-value that is clearly to the right of the root and press ENTER. Type in an approximate guess and press ENTER. The cursor will flash on the root and the coordinates will be displayed at the bottom of the screen. Often, the y-coordinate will not be zero but is so close to zero that the x-coordinate is correct to 13 decimal places. If the function has additional roots, repeat the process making sure to select x-coordinates clearly to the left and right of the desired root. Note: If you have several functions entered into the equation page, use the down arrow to select the proper function after pressing $\mathbf{2}^{\text {nd }}$ TRACE, 2: zero but before choosing an x-coordinate to the left of the root.

III. Finding Points of Intersection

To find the intersection of two functions, enter both functions into the equation page. Press $2^{\text {nd }}$ TRACE and choose 5 : intersection. The cursor will flash on the first equation in the list. To accept this function as one of the two, press ENTER. The
cursor will then move to the next function. If this is one of the two functions, press ENTER. If not, press the down arrow to highlight the desired function, then press ENTER. Type in a reasonable value for the x-coordinate of the point of intersection and press ENTER. The coordinates of the point will be displayed at the bottom of the screen. If there are additional points of intersection, repeat the steps, making sure the guess for the x-coordinate is near the point of intersection.

IV. Plotting Two-Variable Data

The calculator makes a distinction between graphing functions and plotting data. Plotting any active data points is done before graphing any active functions. To plot data follow these steps.

First, make sure that all equations are turned off. This can be done by going to the equation page and deleting functions. If a function is still needed for future work, you can "turn off" the equation by placing the cursor directly on the " $=$ " sign and pressing ENTER.

Second, enter your data in the Lists. Press STAT. Choose 1: Edit. This will bring you to the Lists screen. Delete any unneeded data by moving the cursor to the title bar of that list. Press CLEAR and ENTER. Enter the x-coordinates into a list (usually L1). Enter the corresponding y-coordinates for all data points into another list (usually L2). Make sure that each y-coordinate corresponds to the correct x-coordinate.

Third, press $2^{\text {nd }} \mathbf{Y}=$ [STATPLOT. You will see a screen that looks something like Figure 1. You may have up to three plots active at any given time. Choose a plot (usually 1)

Figure 1

Figure 2

Figure 3

Fourth, press ZOOM and choose option 9: ZoomStat. This will automatically size your window to fit the data. For example, if the data shown in Figure 4 were plotted, the plot of the data would look like Figure 5.

Figure 4

Figure 5
V. Fitting an equation to Data

Once data has been entered into the calculator as shown in Section IV, and equation can be fitted to the data. This requires the user to decide which parent function is a reasonable model for the data. Press STAT, then use the right arrow to move to the CALC submenu as shown in Figure 6.

Figure 6

Options range from 4: LinReg (ax+b) to C: SinReg. The user must choose the model. The data in Figure 5 looks reasonably linear, so we will choose option
4: LinReg $(\mathbf{a x + b})$. The command is pasted to the home screen. The correct format is RegType, Xdata, Ydata, Equation. The commas are required. The comma key is above the 7" key. For this example, the XData is in L_{1} and the YData is in L_{2}. We want to paste the equation into Y_{1}. L_{1} is the shift command of the "1" key and L_{2} is the shift command of the "2" key. To paste the equation into Y_{1}, follow these steps.

First, press VARS. Next, use the right arrow to choose the Y-VARS submenu as shown in Figure 7. Third, choose 1:Function. Finally, choose 1: Y_{1} as shown in Figure 8.

Figure 7

Figure 8

The command on the home screen should look like Figure 9. (Don't worry if there is other information on the screen above this command). As always, press ENTER to execute this command. Your screen will look like Figure 10, showing the equation that represents the Least Squares Regression line.

Figure 9

Figure 10

Press $Y=$ to see that the equation has been pasted into equation Y_{1}. As you can see, the equation has many more decimal places of accuracy than were shown on the home screen. Press GRAPH. The graph of the equation is superimposed over the data points as shown in Figure 11.

Figure 11

VI. Tracing on the Screen

To trace individual values, you can use the TRACE command. The calculator has a standard order that it follows. First, the cursor will jump to any STATPLOTS that are on. Press the left and right arrows will move the cursor to the next point in the list. The coordinates will appear at the bottom of the screen. Pressing the up and down arrows will move the cursor to other Statplots (up to three). If you press the down arrow again, the cursor then moves to the graph of the first function as store in the $\mathbf{Y}=$ screen. The left and right arrows will move you along the function, showing the coordinates at the bottom of the screen. The up and down arrows will move you to the next functions stored in the calculator.

